Publications supported by NEUREKA funding
2024
- Bettamin, L., Mathieu, F., Marty, F. H., Blatche, M. C., Gonzalez‐Dunia, D., Suberbielle, E., & Larrieu, G. (2024). Real‐Time and High‐Resolution Monitoring of Neuronal Electrical Activity and pH Variations Based on the Co‐Integration of Nanoelectrodes and Chem‐FinFETs. Small, 20(27). https://doi.org/10.1002/smll.202309055
- Pagkalos, M., Makarov, R., & Poirazi, P. (2024). Leveraging dendritic properties to advance machine learning and neuro-inspired computing. Current Opinion in Neurobiology, 85, 102853. https://doi.org/10.1016/j.conb.2024.102853
- Chavlis, S., & Poirazi, P. (2024). Dendrites endow artificial neural networks with accurate, robust and parameter-efficient learning. ArXiv, abs/2404.03708.
2023
- Di Palma, V., Pianalto, A., Perego, M., Tallarida, G., Codegoni, D., & Fanciulli, M. (2023). Plasma-Assisted Atomic Layer Deposition of IrO2 for Neuroelectronics. Nanomaterials, 13(6), 976. https://doi.org/10.3390/nano13060976
- Kastellakis, G., Tasciotti, S., Pandi, I., & Poirazi, P. (2023). The dendritic engram. Frontiers in Behavioral Neuroscience, 17. https://doi.org/10.3389/fnbeh.2023.1212139
- Makarov, R., Pagkalos, M., & Poirazi, P. (2023). Dendrites and efficiency: Optimizing performance and resource utilization. Current Opinion in Neurobiology, 83, 102812. https://doi.org/10.1016/j.conb.2023.102812
- Malakasis, N., Chavlis, S., & Poirazi, P. (2023). Synaptic turnover promotes efficient learning in bio-realistic spiking neural networks. bioRxiv : the preprint server for biology, 2023.05.22.541722. https://doi.org/10.1101/2023.05.22.541722
- Pagkalos, M., Chavlis, S., & Poirazi, P. (2023). Introducing the Dendrify framework for incorporating dendrites to spiking neural networks. Nature Communications, 14(1), 131. https://doi.org/10.1038/s41467-022-35747-8
- Tzilivaki, A., Tukker, J. J., Maier, N., Poirazi, P., Sammons, R. P., & Schmitz, D. (2023). Hippocampal GABAergic interneurons and memory. Neuron, 111(20), 3154–3175. https://doi.org/10.1016/j.neuron.2023.06.016
- Bilash, O. M., Chavlis, S., Johnson, C. D., Poirazi, P., & Basu, J. (2023). Lateral entorhinal cortex inputs modulate hippocampal dendritic excitability by recruiting a local disinhibitory microcircuit. Cell Reports, 42(1), 111962. https://doi.org/10.1016/j.celrep.2022.111962
- Muguet, I., Maziz, A., Mathieu, F., Mazenq, L., & Larrieu, G. (2023). Combining PEDOT:PSS Polymer Coating with Metallic 3D Nanowires Electrodes to Achieve High Electrochemical Performances for Neuronal Interfacing Applications. Advanced Materials, 35(39). https://doi.org/10.1002/adma.202302472
2022
- Vallicelli, E. A., Di Palma, V., De Matteis, M., Baschirotto, A., & Fanciulli, M. (2022). A 0.46 nV/√Hz JFET Low-Noise Amplifier for Characterization of Nanoelectrode Coating Materials. 2022 29th IEEE International Conference on Electronics, Circuits and Systems (ICECS), 1–4. https://doi.org/10.1109/ICECS202256217.2022.9970943
- Lecestre, A., Martin, M., Cristiano, F., Baron, T., & Larrieu, G. (2022). Large-Scale Monolithic Fabrication of III–V Vertical Nanowires on a Standard Si(100) Microelectronic Substrate. ACS Omega, 7(7), 5836–5843. https://doi.org/10.1021/acsomega.1c05876
- Chowdhury, A., Luchetti, A., Fernandes, G., Filho, D. A., Kastellakis, G., Tzilivaki, A., Ramirez, E. M., Tran, M. Y., Poirazi, P., & Silva, A. J. (2022). A locus coeruleus-dorsal CA1 dopaminergic circuit modulates memory linking. Neuron, 110(20), 3374-3388.e8. https://doi.org/10.1016/j.neuron.2022.08.001
- Sehgal, M., Almeida, Filho, D., Martin, S., Mejia, I.D., Kastellakis, G., Kim, S., Lee, J., Pekcan, A., Huang, S., Lavi, A., Do, Heo W., Poirazi, P., Trachtenberg, J.T., Silva, A.J. (2022). Co-allocation to overlapping dendritic branches in the retrosplenial cortex integrates contextual memories across time. bioRxiv : the preprint server for biology, https://doi.org/10.1101/2021.10.28.466343
2021
- Yuan, X., Hierlemann, A., & Frey, U. (2021). Extracellular Recording of Entire Neural Networks Using a Dual-Mode Microelectrode Array With 19 584 Electrodes and High SNR. IEEE Journal of Solid-State Circuits, 56(8), 2466–2475. https://doi.org/10.1109/JSSC.2021.3066043
- Chavlis, S., & Poirazi, P. (2021). Drawing inspiration from biological dendrites to empower artificial neural networks. Current Opinion in Neurobiology, 70, 1–10. https://doi.org/10.1016/j.conb.2021.04.007
- Pinitas, K., Chavlis, S., Poirazi, P. (2021). Dendritic Self-Organizing Maps for Continual Learning. arXivLabs, https://doi.org/10.48550/arXiv.2110.13611
2020
- Geiller, T., Vancura, B., Terada, S., Troullinou, E., Chavlis, S., Tsagkatakis, G., Tsakalides, P., Ócsai, K., Poirazi, P., Rózsa, B. J., & Losonczy, A. (2020). Large-Scale 3D Two-Photon Imaging of Molecularly Identified CA1 Interneuron Dynamics in Behaving Mice. Neuron, 108(5), 968-983.e9. https://doi.org/10.1016/j.neuron.2020.09.013